
J CUBE Technical Memo 2016 #2

Milliways: the storage at the back-end of the Multiverse

Marco Pantaleoni
J Cube Inc.

Bo Zhou
J Cube Inc.

Paolo Berto Durante
J Cube Inc.

Aghiles Kheffache
The 3Delight Team

Douglas Adams

Figure 1: Multiverse with Milliways architecture.

1 Abstract and Overview

When we intrduced [JCube 2015], we extended the popular Alem-
bic [ILM and SPI 2009] file format (a data representation scheme
for storing graphics scenes) adding Git distributed version control
capabilities.

Git, however, was conceived with textual source code in mind, per-
forming suboptimally with very large numbers of files, especially
binaries. Since it’s common for Alembic scenes to contain hun-
dreds of thousands of properties/samples, it’s easy to suffer from
heavy filesystem overhead1. We explored alternatives to store Git
objects to circumvent filesystem degrading performances, using the
LIBGIT2 [libgit2 2009] API to change Git storage back-end.

Existing ones turned to be inadequate, therefore we implemented
Milliways, a general purpose storage mechanism, and integrated it
in Multiverse as a new LIBGIT2 back-end, proving to be much faster
and almost as space efficient. Our solution is not restricted to Alem-
bic or even Git but has much wider applicability in IT.

2 Duties of a Git back-end

In Git the vast majority of data is stored inside the “object
database”. Every “git object” is characterized by its type (eg.
commit or blob), by its size in bytes and by its contents. Each ob-
ject is uniquely identified by the SHA-1 hash of the contents (plus
header). So the object database is essentially a key-value store, sup-
porting the operations list, get, put, delete.

3 Existing technologies

At first we tried two storage solutions as LIBGIT2 back-ends: Mem-
cached and SQLite. Memcached showed a substantial speed-up, but
was unsuitable in practice being based in RAM. SQLite was slower
perhaps due to its highly generic nature: it’s among the fastest SQL
database systems, but couldn’t compete with traditional filesystems
for raw data storage. Other popular fast key-value stores either had
too stringent limits for the size of values or were limited to RAM or
both.

4 Our Solution

Being the Git object database a key-value store, we wrote Milli-
ways, a fast disk-based key-value store. We wrote it as a header-
only C++ library, so that it can be easily integrated in other projects.

1This is particularly evident for the Windows filesystem

The underlying data structures are B+-trees, balanced search trees
particulary suitable for disk storage, and, because all code is inlined
and there is no metadata, we end up to be faster than the filesystem.

L #2 R
1 D 4 Q 3

L #1 R
. A . B . C .

L #4 R
. D . F . J .

L #3 R
. Q . W . X . Z .

Figure 2: Example of a B+-tree of degree 3.

Milliways doesn’t impose arbitrary limits on the number of the ele-
ments or the size of the values (currently set to 4GiB per value - can
be brought to 256 TiB). Large values are transparently compressed
with LZ4 [Collet 2016]. The storage is architecture-independend,
and resides in a single file, so can easily be moved across machines
and there are no filesystem overheads related to multiple files. Mil-
liways is fast: on an old 2.3GHz i5 (with SSD) can write between
350k and 600k words/s2.

Milliways is standalone and open source: it can be used in any
project that needs portable, fast, efficient storage of key-value pairs.

4.1 Results

Milliways improves Multiverse speed usually in the range ≈ 30%
– 800%3. In terms of space Milliways needs ∼ 1⁄5 – 1⁄4 more space
than “plain” Multiverse (will be further optimized shortly).

Table 1: I/O Write comparison for Alembic backends (Time–
Size). Further tests and results are available at http://
multi-verse.io/tech/tests

Scene Type Ogawa Git Git Milliways
Anim (deform) 12s–809MB 42s–413MB 18s–512MB
Deep hierarchy 44s–805MB 198s–432MB 120s–570MB
Dense mesh 6s–816MB 34s–398MB 12s–577MB

5 Conclusion and Future Work

Milliways provides a huge improvement to Multiverse performance
and resulted in a winning choice. We plan to continue improving
it, implementing more efficient block allocation, bindings for lan-
guages and a companion server. Make it a solid open source stan-
dalone technology. Further optimizations are also possible on the
Multiverse side: in the future we plan to work on providing a better
integration of the two, improving both space efficiency and speed.

References

COLLET, Y., 2016. Lz4. https://cyan4973.github.io/lz4.

ILM AND SPI. 2009. Alembic format description.

JCUBE. 2015. Multiverse: Next generation storage for alembic.

LIBGIT2. 2009. libgit2 description.

2dict words, speed depending on options and compression
3speed improvement is highly dependent on the scene

1

http://multi-verse.io/tech/tests
http://multi-verse.io/tech/tests

