
Space–Time Varying Color Palettes

Bo Zhou∗

J Cube Inc.
Paolo Berto Durante†

Polygon Pictures Inc.

Figure 1: Color palettes & strategy tree. Knight of Sidonia c©T. Nihei · Kodansha / KOS Prod. Committee

1 Abstract

We improve on the widely used color palette technique in the
context of anime-style rendering. We introduce an event–driven
method to dynamically change color rendition in such rendering
scenarios. Changes can happen over time or over space and are
triggered by pre-defined events. Such events cause the selection
of a particular color palette and node–based “strategy trees” help
artists to plan and to visualize resulting look changes interactively.
As an optimization, we rely on dynamic shading language code
generation to prepare colors before rendering, avoiding the limits
of render–time methods.

2 Overview

In the real world, perceived color is the result of a complex inter-
action between lighting conditions and material properties. In the
surreal world of anime, illumination is local, each character has its
“own” light, and surfaces are either lit or shadowed with no in–
between values. Furthermore, designers explicitly choose lit and
shadowed colors to define the visual perception of a material in a
specific lighting situation [Brunik 2014].

Color palettes bundle the whole atlas of colors for each character
and lighting condition (e.g. daylight, sunset. . . ) so multiple palettes
are required for a single character. Palettes can be shared across
multiple shots so that film-long modifications are easily applied by
updating one palette — an important productivity feature.

A representative example is one where an object enters a region of
space in which a look change is required: one palette then defines
the look inside the region, and another one outside of it (Figure 1,
left). The usual (brute-force) solution would render twice, alternat-
ing the palettes, along with a mask that defines such spatial region,
then blend the two in compositing. This obviously involves manual
work, additional overhead and image processing.

3 Implementation

We reduced all production situations requiring colors to be selected
from different color palettes under two possible cases:

1. Timed events — Such as a spaceship gate opening (our exam-
ple), an explosion or a gunshot being fired at a specific time/frame.
These events are triggered by animation curves and we represent
them as logical operations between “current” time and event’s time;

∗bo@j-cube.jp
†paolo@ppi.co.jp

2. Spatial events — Our example of a character entering a partic-
ular scene region, in our case the outer–space of a spaceship, or a
room lit by a fireplace or an animated spotlight projector: we rep-
resent regions using either pre-defined primitives (half-space, box,
cone, sphere) or any arbitrary geometric object.

We use a node-graph editor to organize and prioritize these events
and we call the resulting graph a “strategy tree” (Figure 1, right).
Such strategy trees allow artists to design lighting condition using
user friendly visual programming concepts.

The low-level part of the implementation is a custom shading lan-
guage function1 that samples palette textures at precise locations
and stores resulting colors in a hash table. This function is invoked
by a dynamically generated shader, which translates and evaluates
the strategy tree prior to rendering and returns the color at render-
time when the shader is executed for the actual rendering.

Dynamic code generation and pre-render palettes evaluations allow
for useful optimizations. For example, timed events return values
that are constant throughout a frame 2 and these constants enable the
compiler to perform constant-folding optimizations. This usually
result in very compact code and fast render times.

4 Conclusion and Future Work

We implemented this method at Polygon Pictures Inc.: the strat-
egy tree allowed artists to easily and intuitively setup look-changing
events and to switch between different palettes on-the-fly, using vi-
sual programming and with interactive results in the DCC appli-
cation. Performance-wise, dynamic code generation allowed us
to improve previous render–time methods by avoiding the need to
hold palette resources in memory. Most importantly, our method
betters the brute-force techniques by not requiring any additional
post-processing — an important cost-saving measure. We plan to
improve our system with screen-based events such as masking re-
gions. Another area of research is automatic generation of palettes
using predefined “moods”. Evaluation and interpolation between
such moods would allow us to generate palettes using human lan-
guage semantics instead of the usual PhotoShop work.

References

BRUNIK, KAITLIN L. & CUTTING, J. E. 2014. Coloring the
animated world. 128.

1A 3Delight/RenderMan DSO shadeop
2Motion blur is an exception but not so important in our anime-style

renders.


