
J CUBE TECHNICAL MEMO 2015 #01

Multi-Masks: a Set-Centric Mask Output for Production Rendering

Paolo Berto Durante∗

J Cube Inc. / Polygon Pictures Inc.
Aghiles Kheffache†

The 3Delight Team

Figure 1: Concurrent “multi-masks” output and edge detection.
Knights of Sidonia c©T. Nihei · Kodansha / KOS Prod. Committee

1 Abstract

We introduce a user-friendly workflow (which we call “multi-
masks”) to define, manipulate and concurrently render coverage
masks. We show the benefits of a set-centric approach, lay the basis
for a successful implementation from a user interface perspective
and explain the rendering technology requirements. We show how
multi-masks can be used to perform edge detection as a mean of
producing “inking” effects.

2 Overview

Masks are bitmaps (similar to mattes) and are convenient to sepa-
rate and manipulate specific scene elements during compositing or
color grading [Fielding 1980]. For example, one can separate fore-
ground and background elements (or elements with specific mate-
rial assignment) to perform a color correction.

A common practice in production is to manually assign numerical
ID’s to scene elements or to use custom material output colors1 to
get masks out of the renderer and into the compositing application.
This approach involves a tedious manual process, requires many
sequential renders and is generally error prone. In addition, effects
such as depth of field and motion blur cause problems due to dif-
ficulties of filtering arbitrary integer values. Lastly, artists do not
have a global view of how masks are setup and assigned.

Another approach is to modify shaders and add custom AOVs to
output specific masks. This approach is even more involved and
necessitates additional technical resources.

The “multi-masks” workflow introduced here is both user friendly
and flexible, allowing output of coverage masks for arbitrary ele-
ments (objects, materials or a hybrid of both) while requiring only
simple additions to the DCC application and the renderer.

3 Implementation

Concepts We use Maya sets2 to define masks (we call these sets
“mask sets”). Sets’ given names are used throughout the application

∗paolo@j-cube.jp
†aghiles@3delight.com
1Sometimes encoding one different mask in each RGB channel.
2Equivalents are trivially implemented in other DCC Apps.

as unique identifiers. Scene elements, either geometry or materials
or both, are then added to these sets to define the visual “contour”
of the coverage masks. This allows artists to easily create arbitrary
masks at an early stage in the pipeline (such as during modeling or
look development) without introducing arbitrary quantities such as
manually assigned IDs.

Secondly, we use automatically generated layers for each mask set.
These layers can then be specified to the renderer as images to out-
put. Any quantity of such layers and their corresponding mask sets
can be defined.

User Interface The application needs a UI to handle addition, re-
moval and listing of set elements. This is readily available in Maya
and most DCC applications through set manipulation tools. Sec-
ondly, the rendering plug-in needs to provide an interface to access
these sets through named layers. This interface is akin to AOV se-
lection UI so layers can simply be added to the list of available AOVs
(or any other UI-equivalent).

Rendering Core Requirements The renderer must be able to
output multiple layers in parallel3 with potentially different visibil-
ity functions for each layer. Naturally, the set of visible elements is
provided for each layer to the renderer. We implemented this work-
flow in 3Delight, supporting both REYES and the ray tracing visi-
bility algorithms. If desired, we use the flexibility of the OpenEXR
file format [Kainz et al. 2006] to store all masks into one file.

4 Results

We implemented multi-masks at Polygon Pictures Inc. and greatly
improved the color grading workflow. Interestingly, the generality
of our approach allowed us to solve a frequent hurdle in anime-
style renderings: generation of edge contours (or outlines) on object
features that are “orthogonal” to assets’ hierarchy or shading setup.
As shown in Figure 1, we used multi-masks to define the atlas of all
needed outlines and then use 3Delight’s sub-sample edge detection
feature to generate contours on the corresponding mask layers.

5 Conclusion and Future Work

We laid the basics of a user friendly coverage masks system that
does not rely on numerical IDs or similar ad-hoc techniques. As a
bonus to the more general use of coverage masks for grading, we
were able to use the multi-masks system to solve common prob-
lems with outline generation. An important improvement to this
system is a more refined definition of “mask regions”, for example,
a texture could be used to define a function on top of our elements-
based mask description. The semantics and the user interface of
this functionality are the premises of ongoing work.

References

FIELDING, R. 1980. A technological history of motion pictures
and television. 146–.

KAINZ, F., BOGART, R., AND STANCZYK, P. 2006. Technical
introduction to openexr. Industrial Light & Magic.

3Sequential output is obviously possible but defeats the purpose.


