
Multiverse: a Next Generation Data Storage for Alembic

Aghiles Kheffache∗

The 3Delight Team / J Cube Inc.
Marco Pantaleoni, Bo Zhou†

J Cube Inc.
Paolo Berto Durante‡

Polygon Pictures Inc. / J Cube Inc.

DCC App

Multiverse

Plug-in FS“Ogawa”

HDF5

libgit2

AbcCoreHDF5

AbcCoreOgawa

AbcCoreGit

AbcCoreAbstractAbc

Figure 1: multiverse architecture diagram. This poster describes
our work underneath the Abc abstraction layer.

1 Abstract

We introduce Multiverse, an open source1 next generation data
back-end to the widely used Alembic file format. Our back-end
relies on Git, a powerful distributed source control system. We in-
herit all the features introduced by Git, including: compact history
and branching, natural data de-duplication, cryptographic data in-
tegrity, SSH internet sharing protocol and collaborative work capa-
bilities. Our scene data representation allows for punctual access to
individual scene elements, opening the door to multi-threaded I/O
as well as easy scene updates. To our knowledge, it is the first time
that such a set of features is available to the production community.

2 Overview

Alembic [ILM & SPI 2009] is a data representation scheme for stor-
ing graphics scenes. It is widely used for both scene exchange and
to encapsulate procedurally accessible geometry. Alembic relies on
both HDF5 [The HDF Group 2000] and “Ogawa” back-ends to store
data. While these file formats provide good performance and func-
tionality, they are closed to advanced features such as versioning,
branching and collaborative work.

Git has become the most widely used source control system. Git
data (or “blobs”) are addressed by their SHA-1 hashes, achieving
natural data de-duplication. This aspect is of particular interest for
scene storage since geometry duplication is common, both inside
one frame and across multiple frames in an animation. In addi-
tion to compact data representation, Git allows for efficient his-
tory representation. Most importantly, the same data de-duplication
mechanism is extended through “revisions” so to share data across
scene’s multiple versions. Extremely interesting features such as
cryptographic data integrity are unfortunately out of the scope of
this poster.

3 Implementation

Thanks to a well defined back-end API in Alembic, we wrote a plug-
in that is API compatible with added functionality for history man-
agement2. We now describe how we use Git to store data and what
“data view” model we use to access 3D scene’s hierarchy.

Data View Model To mirror Alembic scene representation, we
use a virtual directory hierarchy on disk. In this representation,

∗aghiles@{3delight.com, j-cube.jp}
†{marco, bo}@j-cube.jp
‡paolo@ppi.co.jp
1http://multi-verse.io
2Such as specifying commit messages and selecting revisions.

geometry and attributes are stored as files at leaf nodes while hi-
erarchy is expressed as directories. We store geometry in binary
for compactness. Attributes are stored as JSON files for ease of ac-
cess and manipulation. Note that this data view is virtualized: it is
not visible to the user unless a “checkout” of the Git repository is
performed. Such checkout operations can be performed on individ-
ual elements of the scene hierarchy to perform manual or scripted
modifications — a very handy feature in a production environment.

Data Structure On Disk We rely on LIBGIT2 [libgit2 2009] to
read and write Git-based scene repositories and to virtualize the
data view model described above. The library gives direct access
to the repository without going through a “checkout” of the scene
description. In other words, we directly write tree, blob and commit
objects which are the fundamental building blocks of a Git repos-
itory. As a first prototype implementation, we tried to write non-
virtualized scene structure to disk, but this led to unmanageable
performance. Note that Git stores data in a directory structure of its
own, but this is not to be confused with our data view model.

4 Results

We timed Multiverse against Alembic’s standard HDF5 and
“Ogawa” back-ends with different production scenes. Results show
much improved overall data size, a performance degradation in
reading (which is however fast enough for production usage) and
in writing especially on Windows. This was expected since data ac-
cess speed is now tied to file system directory access performance
(unlike HDF5 and “Ogawa”, Git stores data in a directory struc-
ture). Note however that data size and performance isn’t adversely
affected by the presence of many scene versions in one repository.

Table 1: Performance overview

Scene Complexity Disk Size Write Read (sec)

Sidonia 1 medium 1⁄2 2x 3s
Sidonia 2 high 1⁄2 3x 12s
Transformer very high 1⁄2 4x 40s

+History (10 edits) any 1⁄2↔1⁄9 ≈3x edit-dep.

5 Conclusion and Future Work

We introduced a powerful, open source, next generation, data back-
end for Alembic as well as a set of new features that are yet to
be fully explored by production communities. The current imple-
mentation has a much more compact data representation than HDF5
and “Ogawa” but still lacks in I/O performance, especially when
writing. This will be the focus of future work. Leveraging multi-
threading of LIBGIT2 is another area of interest.

References

ILM & SPI. 2009. Alembic format description.

LIBGIT2. 2009. libgit2 description.

SCOTT, C. 2009. Pro git 1st ed.

THE HDF GROUP. 2000. Hierarchical data format version 5.

http://multi-verse.io

